Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(12): e1011832, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039340

RESUMO

After entry into cells, herpes simplex virus (HSV) nucleocapsids dock at nuclear pore complexes (NPCs) through which viral genomes are released into the nucleoplasm where viral gene expression, genome replication, and early steps in virion assembly take place. After their assembly, nucleocapsids are translocated to the cytoplasm for final virion maturation. Nascent cytoplasmic nucleocapsids are prevented from binding to NPCs and delivering their genomes to the nucleus from which they emerged, but how this is accomplished is not understood. Here we report that HSV pUL16 and pUL21 deletion mutants accumulate empty capsids at the cytoplasmic face of NPCs late in infection. Additionally, prior expression of pUL16 and pUL21 prevented incoming nucleocapsids from docking at NPCs, delivering their genomes to the nucleus and initiating viral gene expression. Both pUL16 and pUL21 localized to the nuclear envelope, placing them in an appropriate location to interfere with nucleocapsid/NPC interactions.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Capsídeo/metabolismo , Poro Nuclear/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Nucleocapsídeo/metabolismo
2.
PLoS Pathog ; 18(11): e1010969, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36374856

RESUMO

During virion morphogenesis herpes simplex virus nucleocapsids transit from the nucleoplasm to the cytoplasm, through a process called nuclear egress, where the final stages of virion assembly occur. Coupled to nuclear egress is a poorly understood quality-control mechanism that preferentially selects genome-containing C-capsids, rather than A- and B-capsids that lack genomes, for transit to the cytoplasm. We and others have reported that cells infected with HSV strains deleted for the tegument protein pUL21 accumulate both empty A-capsids and C-capsids in the cytoplasm of infected cells. Quantitative microscopy experiments indicated that C-capsids were preferentially selected for envelopment at the inner nuclear membrane and that nuclear integrity remained intact in cells infected with pUL21 mutants, prompting alternative explanations for the accumulation of A-capsids in the cytoplasm. More A-capsids were also found in the nuclei of cells infected with pUL21 mutants compared to their wild type (WT) counterparts, suggesting pUL21 might be required for optimal genome packaging or genome retention within capsids. In support of this, more viral genomes were prematurely released into the cytoplasm during pUL21 mutant infection compared to WT infection and led to enhanced activation of cellular cytoplasmic DNA sensors. Mass spectrometry and western blot analysis of WT and pUL21 mutant capsids revealed an increased association of the known pUL21 binding protein, pUL16, with pUL21 mutant capsids, suggesting that premature and/or enhanced association of pUL16 with capsids might result in capsid destabilization. Further supporting this idea, deletion of pUL16 from a pUL21 mutant strain rescued genome retention within capsids. Taken together, these findings suggest that pUL21 regulates pUL16 addition to nuclear capsids and that premature, and/or, over-addition of pUL16 impairs HSV genome retention within capsids.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Capsídeo/metabolismo , Herpesvirus Humano 1/genética , Montagem de Vírus/genética , Genoma Viral
3.
PLoS Pathog ; 17(8): e1009679, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424922

RESUMO

It is well established that the herpesvirus nuclear egress complex (NEC) has an intrinsic ability to deform membranes. During viral infection, the membrane-deformation activity of the NEC must be precisely regulated to ensure efficient nuclear egress of capsids. One viral protein known to regulate herpes simplex virus type 2 (HSV-2) NEC activity is the tegument protein pUL21. Cells infected with an HSV-2 mutant lacking pUL21 (ΔUL21) produced a slower migrating species of the viral serine/threonine kinase pUs3 that was shown to be a hyperphosphorylated form of the enzyme. Investigation of the pUs3 substrate profile in ΔUL21-infected cells revealed a prominent band with a molecular weight consistent with that of the NEC components pUL31 and pUL34. Phosphatase sensitivity and retarded mobility in phos-tag SDS-PAGE confirmed that both pUL31 and pUL34 were hyperphosphorylated by pUs3 in the absence of pUL21. To gain insight into the consequences of increased phosphorylation of NEC components, the architecture of the nuclear envelope in cells producing the HSV-2 NEC in the presence or absence of pUs3 was examined. In cells with robust NEC production, invaginations of the inner nuclear membrane were observed that contained budded vesicles of uniform size. By contrast, nuclear envelope deformations protruding outwards from the nucleus, were observed when pUs3 was included in transfections with the HSV-2 NEC. Finally, when pUL21 was included in transfections with the HSV-2 NEC and pUs3, decreased phosphorylation of NEC components was observed in comparison to transfections lacking pUL21. These results demonstrate that pUL21 influences the phosphorylation status of pUs3 and the HSV-2 NEC and that this has consequences for the architecture of the nuclear envelope.


Assuntos
Herpes Simples/patologia , Herpesvirus Humano 2/fisiologia , Membrana Nuclear/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Animais , Capsídeo/fisiologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Herpes Simples/metabolismo , Herpes Simples/virologia , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/virologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Células Vero , Proteínas Virais/genética , Montagem de Vírus
4.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321804

RESUMO

Viral proteins pUL16 and pUL21 are required for efficient nuclear egress of herpes simplex virus 2 capsids. To better understand the role of these proteins in nuclear egress, we established whether nuclear egress complex (NEC) distribution and/or function was altered in the absence of either pUL16 or pUL21. NEC distribution in cells infected with pUL16-deficient viruses was indistinguishable from that observed in cells infected with wild-type viruses. In contrast, NEC distribution was aberrant in cells infected with pUL21-deficient virus and, instead, showed some similarity to the aberrant NEC distribution pattern observed in cells infected with pUs3-deficient virus. These results indicated that pUL16 plays a role in nuclear egress that is distinct from that of pUL21 and pUs3. Higher-resolution examination of nuclear envelope ultrastructure in cells infected with pUL21-deficient viruses by transmission electron microscopy showed different types of nuclear envelope perturbations, including some that were not observed in cells infected with pUs3 deficient virus. The formation of the nuclear envelope perturbations observed in pUL21-deficient virus infections was dependent on a functional NEC, revealing a novel role for pUL21 in regulating NEC activity. The results of comparisons of nuclear envelope ultrastructure in cells infected with viruses lacking pUs3, pUL16, or both pUs3 and pUL16 were consistent with a role for pUL16 in advance of primary capsid envelopment and shed new light on how pUs3 functions in nuclear egress.IMPORTANCE The membrane deformation activity of the herpesvirus nuclear egress complex (NEC) allows capsids to transit through both nuclear membranes into the cytoplasm. NEC activity must be precisely controlled during viral infection, and yet our knowledge of how NEC activity is controlled is incomplete. To determine how pUL16 and pUL21, two viral proteins required for nuclear egress of herpes simplex virus 2, function in nuclear egress, we examined how the lack of each protein impacted NEC distribution. These analyses revealed a function of pUL16 in nuclear egress distinct from that of pUL21, uncovered a novel role for pUL21 in regulating NEC activity, and shed new light on how a viral kinase, pUs3, regulates nuclear egress. Nuclear egress of capsids is required for all herpesviruses. A complete understanding of all aspects of nuclear egress, including how viral NEC activity is controlled, may yield strategies to disrupt this process and aid the development of herpes-specific antiviral therapies.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Núcleo Celular/virologia , Chlorocebus aethiops , Fibroblastos , Células HeLa , Herpes Simples/virologia , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/fisiologia , Humanos , Camundongos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Simplexvirus/metabolismo , Simplexvirus/patogenicidade , Células Vero , Proteínas Virais/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Vírion/metabolismo , Montagem de Vírus , Liberação de Vírus/fisiologia , Replicação Viral
5.
J Biol Chem ; 293(45): 17631-17645, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30242126

RESUMO

Upon repeated exposure to endotoxin or lipopolysaccharide (LPS), myeloid cells enter a refractory state called endotoxin tolerance as a homeostatic mechanism. In innate immune cells, LPS is recognized by co-receptors Toll-like receptor 4 (TLR4) and CD-14 to initiate an inflammatory response for subsequent cytokine production. One such cytokine, interleukin (IL)-27, is produced by myeloid cells in response to bacterial infection. In monocytes, IL-27 has proinflammatory functions such as up-regulating TLR4 expression for enhanced LPS-mediated cytokine production; alternatively, IL-27 induces inhibitory functions in activated macrophages. This study investigated the effects of IL-27 on the induction of endotoxin tolerance in models of human monocytes compared with macrophages. Our data demonstrate that IL-27 inhibits endotoxin tolerance by up-regulating cell surface TLR4 expression and soluble CD14 production to mediate stability of the surface LPS-TLR4-CD14 complex in THP-1 cells. In contrast, elevated basal expression of membrane-bound CD14 in phorbol 12-myristate 13-acetate (PMA)-THP-1 cells, primary monocytes, and primary macrophages may promote CD14-mediated endocytosis and be responsible for the preservation of an endotoxin-tolerized state in the presence of IL-27. Overall, the efficacy of IL-27 in inhibiting endotoxin tolerance in human THP-1 monocytes and PMA-THP-1 macrophages is affected by membrane-bound and soluble CD14 expression.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Interleucinas/imunologia , Receptores de Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Modelos Imunológicos , Monócitos/imunologia , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia , Receptor 4 Toll-Like/imunologia
6.
Viruses ; 10(5)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762484

RESUMO

Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV) with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated.


Assuntos
Sistemas CRISPR-Cas , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/fisiologia , Mutagênese , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Genes Virais/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/crescimento & desenvolvimento , Humanos , Deleção de Sequência , Ensaio de Placa Viral , Proteínas Virais/genética
7.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669832

RESUMO

Orthologs of the herpes simplex virus (HSV) UL16 gene are conserved throughout the Herpesviridae Because of this conservation, one might expect that the proteins perform similar functions for all herpesviruses. Previous studies on a UL16-null mutant derived from HSV-2 strain 186 revealed a roughly 100-fold replication defect and a critical role for UL16 in the nuclear egress of capsids. These findings were in stark contrast to what has been observed with UL16 mutants of HSV-1 and pseudorabies virus, where roughly 10-fold replication deficiencies that were accompanied by defects in the secondary envelopment of cytoplasmic capsids were reported. One possible explanation for this discrepancy is that HSV-2 strain 186 is not representative of the HSV-2 species. To address this possibility, multiple UL16-null mutants were constructed in multiple HSV-2 and HSV-1 strains by CRISPR/Cas9 mutagenesis, and their phenotypes were characterized side by side. This analysis showed that all the HSV-2 UL16 mutants had 50- to 100-fold replication deficiencies that were accompanied by defects in the nuclear egress of capsids, as well as defects in the secondary envelopment of cytoplasmic capsids. By contrast, most HSV-1 UL16 mutants had 10-fold replication deficiencies that were accompanied by defects in secondary envelopment of cytoplasmic capsids. These findings indicated that UL16 has HSV species-specific functions. Interestingly, HSV-1 UL16 could promote the nuclear egress of HSV-2 UL16-null strains, suggesting that, unlike HSV-1, HSV-2 lacks an activity that can promote nuclear egress in the absence of UL16.IMPORTANCE HSV-2 and HSV-1 are important human pathogens that cause distinct diseases in their hosts. A complete understanding of the morphogenesis of these viruses is expected to reveal vulnerabilities that can be exploited in the treatment of HSV disease. UL16 is a virion structural component that is conserved throughout the Herpesviridae and functions in virus morphogenesis; however, previous studies have suggested different roles for UL16 in the morphogenesis of HSV-2 and HSV-1. This study sought to resolve this apparent discrepancy by analyzing multiple UL16 mutant viruses derived from multiple strains of HSV-2 and HSV-1. The data indicate that UL16 has HSV species-specific functions, as HSV-2 has a requirement for UL16 in the escape of capsids from the nucleus whereas both HSV-2 and HSV-1 require UL16 for final envelopment of capsids at cytoplasmic membranes.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 2/fisiologia , Mutação , Proteínas Virais/metabolismo , Replicação Viral , Animais , Chlorocebus aethiops , Humanos , Especificidade da Espécie , Células Vero , Proteínas Virais/genética
8.
Sci Rep ; 7(1): 1882, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507315

RESUMO

The herpes simplex virus (HSV) UL31 gene encodes a conserved member of the herpesvirus nuclear egress complex that not only functions in the egress of DNA containing capsids from the nucleus, but is also required for optimal replication of viral DNA and its packaging into capsids. Here we report that the UL31 protein from HSV-2 can be recruited to sites of DNA damage by sequences found in its N-terminus. The N-terminus of UL31 contains sequences resembling a poly (ADP-ribose) (PAR) binding motif suggesting that PAR interactions might mediate UL31 recruitment to damaged DNA. Whereas PAR polymerase inhibition prevented UL31 recruitment to damaged DNA, inhibition of signaling through the ataxia telangiectasia mutated DNA damage response pathway had no effect. These findings were further supported by experiments demonstrating direct and specific interaction between HSV-2 UL31 and PAR using purified components. This study reveals a previously unrecognized function for UL31 and may suggest that the recognition of PAR by UL31 is coupled to the nuclear egress of herpesvirus capsids, influences viral DNA replication and packaging, or possibly modulates the DNA damage response mounted by virally infected cells.


Assuntos
Dano ao DNA , Herpesvirus Humano 2/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Virais/metabolismo , Evolução Biológica , Linhagem Celular , Dano ao DNA/efeitos da radiação , Expressão Gênica , Genes Reporter , Herpesvirus Humano 2/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Virais/genética
9.
J Leukoc Biol ; 102(1): 83-94, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28377398

RESUMO

IL-27 bridges innate and adaptive immunity by modulating cytokine production from myeloid cells and regulating Th cell differentiation. During bacterial infection, TLR4 triggering by LPS induces IL-27 production by monocytes and macrophages. We have previously shown that IL-27 can prime monocytes for LPS responsiveness by enhancing TLR4 expression and intracellular signaling. If unregulated, this could result in damaging inflammation, whereas on the other hand, this may also provide greater responses by inflammatory processes induced in response to bacterial pathogens. A key process in fine-tuning inflammatory responses is activation of the inflammasome, which ultimately results in IL-1ß production. Herein, we investigated the molecular mechanisms by which IL-27 modulates LPS-induced IL-1ß secretion in monocytes and macrophages. We found that when delivered simultaneously with LPS, IL-27 augments activation of caspase-1 and subsequent release of IL-1ß. Furthermore, we determined that IL-27 primes cells for enhanced IL-1ß production by up-regulating surface expression of TLR4 and P2X purinoceptor 7 (P2X7) for enhanced LPS and ATP signaling, respectively. These findings provide new evidence that IL-27 plays an important role in the proinflammatory capacity of monocytes and macrophages via enhancing IL-1ß secretion levels triggered by dual LPS-ATP stimulation.


Assuntos
Interleucina-1beta/imunologia , Interleucinas/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Monócitos/imunologia , Transdução de Sinais/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/genética , Caspase 1/imunologia , Linhagem Celular Tumoral , Humanos , Interleucina-1beta/genética , Interleucinas/genética , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
10.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275195

RESUMO

The herpes simplex virus (HSV) UL16 gene is conserved throughout the Herpesviridae and encodes a poorly understood tegument protein. The HSV-1 UL16 protein forms complexes with several viral proteins, including UL11, gE, VP22, and UL21. We previously demonstrated that HSV-2 UL21 was essential for virus propagation due to the failure of DNA-containing capsids (C capsids) to exit the nucleus. We hypothesized that if a UL16/UL21 complex was required for nuclear egress, HSV-2 lacking UL16 would have a phenotype similar to that of HSV-2 lacking UL21. Deletion of HSV-2 UL16 (Δ16) resulted in a 950-fold reduction in virus propagation in mouse L cell fibroblasts and a 200-fold reduction in virus propagation in Vero cells that was fully reversed upon the repair of Δ16 (Δ16R) and partially reversed by infecting UL16-expressing cells with Δ16. The kinetics of viral gene expression in cells infected with Δ16 were indistinguishable from those of cells infected with Δ16R or the parental virus. Additionally, similar numbers of capsids were isolated from the nuclei of cells infected with Δ16 and the parental virus. However, transmission electron microscopy, fluorescence in situ hybridization experiments, and fluorescent capsid localization assays all indicated a reduction in the ability of Δ16 C capsids to exit the nucleus of infected cells. Taken together, these data indicate that, like UL21, UL16 is critical for HSV-2 propagation and suggest that the UL16 and UL21 proteins may function together to facilitate the nuclear egress of capsids.IMPORTANCE HSV-2 is a highly prevalent sexually transmitted human pathogen that is the main cause of genital herpes infections and is fueling the epidemic transmission of HIV in sub-Saharan Africa. Despite important differences in the pathological features of HSV-1 and HSV-2 infections, HSV-2 is understudied compared to HSV-1. Here we demonstrate that a deletion of the HSV-2 UL16 gene results in a substantial inhibition of virus replication due to a reduction in the ability of DNA-containing capsids to exit the nucleus of infected cells. The phenotype of this UL16 mutant resembles that of an HSV-2 UL21 mutant described previously by our laboratory. Because UL16 and UL21 interact, these findings suggest that a complex containing both proteins may function together in nuclear egress.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/fisiologia , Núcleo Celular/virologia , Herpesvirus Humano 2/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Liberação de Vírus , Animais , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Fibroblastos/virologia , Herpesvirus Humano 2/química , Herpesvirus Humano 2/genética , Humanos , Camundongos , Células Vero , Montagem de Vírus , Replicação Viral
11.
J Virol ; 90(17): 7943-55, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334584

RESUMO

UNLABELLED: We previously established that cells infected with herpes simplex virus 2 (HSV-2) are disrupted in their ability to form stress granules (SGs) in response to oxidative stress and that this disruption is mediated by virion host shutoff protein (vhs), a virion-associated endoribonuclease. Here, we test the requirement for vhs endoribonuclease activity in disruption of SG formation. We analyzed the ability of HSV-2 vhs carrying the point mutation D215N, which ablates its endoribonuclease activity, to disrupt SG formation in both transfected and infected cells. We present evidence that ablation of vhs endoribonuclease activity results in defects in vhs-mediated disruption of SG formation. Furthermore, we demonstrate that preformed SGs can be disassembled by HSV-2 infection in a manner that requires vhs endoribonuclease activity and that, befitting this ability to promote SG disassembly, vhs is able to localize to SGs. Together these data indicate that endoribonuclease activity must be maintained in order for vhs to disrupt SG formation. We propose a model whereby vhs-mediated destruction of SG mRNA promotes SG disassembly and may also prevent SG assembly. IMPORTANCE: Stress granules (SGs) are transient cytoplasmic structures that form when a cell is exposed to stress. SGs are emerging as potential barriers to viral infection, necessitating a more thorough understanding of their basic biology. We identified virion host shutoff protein (vhs) as a herpes simplex virus 2 (HSV-2) protein capable of disrupting SG formation. As mRNA is a central component of SGs and the best-characterized activity of vhs is as an endoribonuclease specific for mRNA in vivo, we investigated the requirement for vhs endoribonuclease activity in disruption of SG formation. Our studies demonstrate that endoribonuclease activity is required for vhs to disrupt SG formation and, more specifically, that SG disassembly can be driven by vhs endoribonuclease activity. Notably, during the course of these studies we discovered that there is an ordered departure of SG components during their disassembly and, furthermore, that vhs itself has the capacity to localize to SGs.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Herpesvirus Humano 2/enzimologia , Herpesvirus Humano 2/fisiologia , Interações Hospedeiro-Patógeno , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ribonucleases/genética , Proteínas Virais/genética
12.
Viruses ; 8(3): 81, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26999187

RESUMO

In this article, we provide an overview of translational arrest in eukaryotic cells in response to stress and the tactics used specifically by alphaherpesviruses to overcome translational arrest. One consequence of translational arrest is the formation of cytoplasmic compartments called stress granules (SGs). Many viruses target SGs for disruption and/or modification, including the alphaherpesvirus herpes simplex virus type 2 (HSV-2). Recently, it was discovered that HSV-2 disrupts SG formation early after infection via virion host shutoff protein (vhs), an endoribonuclease that is packaged within the HSV-2 virion. We review this discovery and discuss the insights it has provided into SG biology as well as its potential significance in HSV-2 infection. A model for vhs-mediated disruption of SG formation is presented.


Assuntos
Células Eucarióticas/fisiologia , Células Eucarióticas/virologia , Herpesvirus Humano 2/fisiologia , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Estresse Fisiológico , Replicação Viral , Organelas/metabolismo , Ribonucleases/metabolismo , Proteínas Virais/metabolismo
13.
Viruses ; 6(9): 3500-13, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25256393

RESUMO

In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field.


Assuntos
Proteínas de Ligação a RNA/fisiologia , Estresse Fisiológico , Animais , Doenças Transmissíveis/etiologia , Humanos , Imunidade Inata , Neoplasias/etiologia , Doenças do Sistema Nervoso/etiologia , Viroses/etiologia
14.
J Virol ; 88(21): 12727-39, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142597

RESUMO

UNLABELLED: In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. IMPORTANCE: Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation.


Assuntos
Arsênio/toxicidade , Grânulos Citoplasmáticos/metabolismo , Herpesvirus Humano 2/enzimologia , Interações Hospedeiro-Patógeno , Estresse Oxidativo , Ribonucleases/metabolismo , Proteínas Virais/metabolismo , Vírion/enzimologia , Animais , Linhagem Celular , Humanos
15.
Am J Physiol Regul Integr Comp Physiol ; 306(6): R375-86, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24452544

RESUMO

There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).


Assuntos
Tecido Adiposo Branco/inervação , Sistema Nervoso Central/citologia , Privação de Alimentos/fisiologia , Gânglios Simpáticos/citologia , Gordura Intra-Abdominal/inervação , Gordura Subcutânea/inervação , Tecido Adiposo Branco/metabolismo , Fibras Adrenérgicas/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Cricetinae , Gânglios Simpáticos/metabolismo , Herpesvirus Suídeo 1 , Gordura Intra-Abdominal/metabolismo , Lipólise/fisiologia , Masculino , Marcadores do Trato Nervoso , Phodopus , Gordura Subcutânea/metabolismo
16.
J Virol ; 87(17): 9590-603, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23785212

RESUMO

The Us2 gene encodes a tegument protein that is conserved in most members of the Alphaherpesvirinae. Previous studies on the pseudorabies virus (PRV) Us2 ortholog indicated that it is prenylated, associates with membranes, and spatially regulates the enzymatic activity of the MAP (mitogen-activated protein) kinase ERK (extracellular signal-related kinase) through direct binding and sequestration of ERK at the cytoplasmic face of the plasma membrane. Here we present an analysis of the herpes simplex virus 2 (HSV-2) Us2 ortholog and demonstrate that, like PRV Us2, HSV-2 Us2 is a virion component and that, unlike PRV Us2, it does not interact with ERK in yeast two-hybrid assays. HSV-2 Us2 lacks prenylation signals and other canonical membrane-targeting motifs yet is tightly associated with detergent-insoluble membranes and localizes predominantly to recycling endosomes. Experiments to identify cellular proteins that facilitate HSV-2 Us2 membrane association were inconclusive; however, these studies led to the identification of HSV-2 Us2 as a ubiquitin-interacting protein, providing new insight into the functions of HSV-2 Us2.


Assuntos
Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Animais , Chlorocebus aethiops , Endossomos/virologia , Genes Virais , Células HEK293 , Herpesvirus Humano 2/patogenicidade , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases , Prenilação , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Células Vero
17.
J Virol ; 87(10): 5904-15, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487471

RESUMO

Herpes simplex virus 2 (HSV-2) is an important human pathogen that is the major cause of genital herpes infections and a significant contributor to the epidemic spread of human immunodeficiency virus infections. The UL21 gene is conserved throughout the Alphaherpesvirinae subfamily and encodes a tegument protein that is dispensable for HSV-1 and pseudorabies virus replication in cultured cells; however, its precise functions have not been determined. To investigate the role of UL21 in the HSV-2 replicative cycle, we constructed a UL21 deletion virus (HSV-2 ΔUL21) using an HSV-2 bacterial artificial chromosome, pYEbac373. HSV-2 ΔUL21 was unable to direct the production of infectious virus in noncomplementing cells, whereas the repaired HSV-2 ΔUL21 strain grew to wild-type (WT) titers, indicating that UL21 is essential for virus propagation. Cells infected with HSV-2 ΔUL21 demonstrated a 2-h delay in the kinetics of immediate early viral gene expression. However, this delay in gene expression was not responsible for the inability of cells infected with HSV-2 ΔUL21 to produce virus insofar as late viral gene products accumulated to WT levels by 24 h postinfection (hpi). Electron and fluorescence microscopy studies indicated that DNA-containing capsids formed in the nuclei of ΔUL21-infected cells, while significantly reduced numbers of capsids were located in the cytoplasm late in infection. Taken together, these data indicate that HSV-2 UL21 has an early function that facilitates viral gene expression as well as a late essential function that promotes the egress of capsids from the nucleus.


Assuntos
Genes Essenciais , Herpesvirus Humano 2/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Capsídeo/química , Capsídeo/ultraestrutura , Linhagem Celular , Núcleo Celular/virologia , Cromossomos Artificiais Bacterianos , Citoplasma/virologia , Deleção de Genes , Teste de Complementação Genética , Herpesvirus Humano 2/genética , Viabilidade Microbiana , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas Virais/genética
18.
Sci Rep ; 2: 974, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23240078

RESUMO

IL-27 modulates inflammatory responses by influencing cytokine secretion and CD4 T cell differentiation. Recently, IL-27 was demonstrated to inhibit HIV replication by inducing type I interferon (IFN) expression and subsequent IFN-dependent expression of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-3 family members, a group of antiviral cytidine deaminases. To characterize other anti-viral genes modulated by IL-27, we examined another IFN-responsive gene: tetherin/bone marrow stromal cell antigen 2 (BST-2). Our study shows that IL-27 can directly induce BST-2 expression, independently of an intermediary type I IFN response. Quantitative RT-PCR analysis demonstrated IL-27-induced BST-2 mRNA expression as early as 2h after exposure of cells to IL-27. In the presence of the type I IFN-neutralizing protein, B18R, IL-27-induced BST-2 expression was maintained, demonstrating that IFN is not an intermediary in IL-27-induced BST-2. Taken together, our findings identify a novel function of IL-27 as a direct stimulator of BST-2 expression.


Assuntos
Antígenos CD/genética , Citosina Desaminase/metabolismo , Interferon Tipo I/metabolismo , Interleucina-17/fisiologia , Monócitos/metabolismo , Linfócitos T/metabolismo , Desaminases APOBEC , Linhagem Celular , Citidina Desaminase , Citometria de Fluxo , Proteínas Ligadas por GPI/genética , Humanos , RNA Mensageiro/genética , Transdução de Sinais
19.
PLoS One ; 7(8): e42636, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22900036

RESUMO

The mouse L cell mutant, gro29, was selected for its ability to survive infection by herpes simplex virus type 1 (HSV-1). gro29 cells are fully susceptible to HSV-1 infection, however, they produce 2000-fold less infectious virus than parental L cells despite their capacity to synthesize late viral gene products and assemble virions. Because productive HSV-1 infection is presumed to result in the death of the host cell, we questioned how gro29 cells might survive infection. Using time-lapse video microscopy, we demonstrated that a fraction of infected gro29 cells survived infection and divided. Electron microscopy of infected gro29 cells, revealed large membranous vesicles that contained virions as well as cytoplasmic constituents. These structures were reminiscent of autophagosomes. Autophagy is an ancient cellular process that, under nutrient deprivation conditions, results in the degradation and catabolism of cytoplasmic components and organelles. We hypothesized that enhanced autophagy, and resultant degradation of virions, might explain the ability of gro29 to survive HSV-1 infection. Here we demonstrate that gro29 cells have enhanced basal autophagy as compared to parental L cells. Moreover, treatment of gro29 cells with 3-methyladenine, an inhibitor of autophagy, failed to prevent the formation of autophagosome-like organelles in gro29 cells indicating that autophagy was dysregulated in these cells. Additionally, we observed robust co-localization of the virion structural component, VP26, with the autophagosomal marker, GFP-LC3, in infected gro29 cells that was not seen in infected parental L cells. Collectively, these data support a model whereby gro29 cells prevent the release of infectious virus by directing intracellular virions to an autophagosome-like compartment. Importantly, induction of autophagy in parental L cells did not prevent HSV-1 production, indicating that the relationship between autophagy, virus replication, and survival of HSV-1 infection by gro29 cells is complex.


Assuntos
Autofagia , Fibroblastos/virologia , Herpesvirus Humano 1/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Sobrevivência Celular , Chlorocebus aethiops , Vesículas Citoplasmáticas/virologia , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/imunologia , Células L , Camundongos , Fenótipo , Fosforilação , Transporte Proteico , Fatores de Transcrição/metabolismo , Células Vero , Vírion/ultraestrutura , Replicação Viral
20.
J Virol ; 86(15): 8119-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623775

RESUMO

Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Replicação do DNA/fisiologia , DNA Viral/biossíntese , Herpes Genital/metabolismo , Herpesvirus Humano 2/fisiologia , Replicação Viral/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Grânulos Citoplasmáticos/virologia , DNA Helicases , Replicação do DNA/efeitos dos fármacos , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Compostos de Epóxi/farmacologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HeLa , Herpes Genital/genética , Herpes Genital/patologia , Humanos , Macrolídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Antígeno-1 Intracelular de Células T , Tiazóis/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...